Section 4.1 Extra Practice

1. How many x-intercepts does the graph of each quadratic function have?

 a)

 b)

 c)

2. What are the roots of the quadratic equations graphed in #1?

3. Solve by graphing.
 a) $0 = -a^2 - 3a - 4$
 b) $12 = -3b^2 - 12b$
 c) $6c^2 + 30c = 0$
 d) $d^2 - 4 = 0$

4. Determine the roots for each quadratic equation. Where integral roots cannot be found, estimate the roots to the nearest tenth.
 a) $0 = x^2 + 2.4x - 3.85$
 b) $z^2 - 15 = 0$
 c) $t^2 + t = -1$
 d) $0 = -u^2 - u + 5$

5. Solve by graphing.
 a) $t^2 - 5t - 150 = 0$
 b) $h^2 - 400 = 0$
 c) $0 = x^2 + 0.6x - 0.05$
 d) $5y^2 + 3y + 100 = 0$
6. For what values of \(m \) would the equation \(x^2 + 8x + m = 0 \) have
 a) one real root or two equal real roots?
 b) two real distinct roots?
 c) no real roots?

7. An object is launched at 21.5 m/s from a height of 2.4 m. The equation for the object’s height, \(h \), measured in metres, \(t \) seconds after launch is \(h = -4.9t^2 + 21.5t + 2.4 \). After how many seconds will the object hit the ground? Express your answer to the nearest tenth of a second.

8. A right triangle has one side that is 7 cm longer than its shortest side. The triangle’s hypotenuse is 8 cm longer than the shortest side. What are the dimensions of the triangle?